技術(shù)文章

    Technical articles

    當(dāng)前位置:首頁(yè)技術(shù)文章等離子體處理對(duì) 硅表面氧空位缺陷工程

    等離子體處理對(duì) 硅表面氧空位缺陷工程

    更新時(shí)間:2020-12-02點(diǎn)擊次數(shù):3282

    Electronic Supplementary Information For

    Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma

    treatment for enhancing VOCs sensing performances

    Bin Tong, a b Gang Meng, * a c Zanhong Deng, a c Mati Horprathum, d Annop

    Klamchuen e and Xiaodong Fang * a c

    aAnhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine

    Mechanics, Chinese Academy of Sciences, Hefei, 230031, China

    bUniversity of Science and Technology of China, Hefei 230026, China

    cKey Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei

    230031, China

    d Opto-Electrochemical Sensing Research Team, National Electronic and Computer Technology Center,

    PathumThani 12120, Thailand

    eNational Nanotechnology Center, National Science and Technology Development Agency, Pathum

    Thani 12120, Thailand

     

    Experimental Section

    1.1 Synthesis of CuAlO2 particles

    First of all, 0.04 mol Cu(CH3COO)2·H2O (Alfa Aesar, 99.9%) was dissolved in 160 mL absolute alcohol with

    vigorous stirring, and then 16 mL HNO3 (Sinopharm Chemical Reagent, 99.7%), 0.2 mol C6H8O7·H2O

    (Sinopharm Chemical Reagent, 99.8%) and 0.04 mol Al[OCH(CH3)CH2CH3]3 (Alfa Aesar, 97%) were added into

    the above solution in sequence. After stirring for 6 hours, 16 mL HNO3 was added to the solution drop by drop to

    obtain a well-mixed precursor solution. The precursor solution was dried at 100 °C overnight. In order to remove

    the organics, the condensed solution was heated to 300 °C for 6 hours. After that, the dried powders were milled

    for 24 h using a planetary ball miller and then annealed at 1100 °C for 10 h under air atmosphere. Subsequently,

    the powders were reground and heated to 950 °C under flowing N2 atmosphere for 6 hours to form delafossite

    CuAlO2 particles. To ensure the pure phase of delafossite CuAlO2, trace (excess) CuxO was washed with 1 M

    diluted hydrochloric acid, 11 deionized water and absolute alcohol in sequence several times, and the final products

    were dried in an oven at 80 °C for 24 h.

    1.2 Fabrication of CuAlO2 sensors

    The CuAlO2 slurry was prepared by dispersing the powders in appropriate isopropyl alcohol. CuAlO2 sensors

    were prepared by brushing the above paste onto a thin alumina substrate with micro-interdigital Pt electrodes.

    CuAlO2 films on slide glass substrates were fabricated simultaneously for characterization. After naturally drying,

    the CuAlO2 sensors and films were heated at 350 °C under flowing air atmosphere for 3 hours. Afterwards, the

    samples were treated by Ar&H2 plasma in KT-S2DQX (150 W, 13.56 MHz, (鄭州科探儀器設(shè)備有限公司)) plasma etching system

    at 10 sccm 4% H2 in Ar and the pressure of ~ 99.8 Pa for 30 min, 60 min and 90 min, herein are referred to as

    pristine, PT-30, PT-60 and PT-90.

    1.3 Characterization and gas sensing test

    CuAlO2 samples were characterized by X-ray diffraction (XRD, Rigaku Smartlab), scanning electron

    microscope (SEM, VEGA3 TESCAN), field emission high resolution transmission electron microscope

    (HRTEM, Talos F200X), X-ray photoelectron spectroscopy (XPS, Thermo Scientific Esca Lab 250Xi

    spectrometer ), photoluminescence (PL, JY Fluorolog-3-Tou) and Electron spin resonance (ESR, JEOL, JES

    FA200 ESR spectrometer ). Mott-Schottky measurements were carried out on an electrochemical work-station

    (Zahner Company, Germany) in 1M NaOH solution (pH=12.5) with frequency of 5000 Hz. Platinum sheet,

    Ag/AgCl electrode and pristine/ PT-30 CuAlO2 samples were used as counter electrode, reference electrode and

    work electrode, respectively. Gas sensing tests were examined in SD101 (Hua Chuang Rui Ke Technology Co.,

    Ltd.) sensing system. The response was defined as ΔR/Ra, ΔR = Rg Ra, where Ra and Rg are sensor resistance in

     

    flowing drying air and synthetic VOCs, respectively. During gas sensing test, the total flow rate of the dry air and

    VOCs gas were adjusted to be 1000 sccm by mass flow controllers (MFCs).

     

    Fig. S1. Cross-sectional SEM image of typical CuAlO2 sensors. The inset shows a low-magnification image.

    The sensing layer is comprised of loosely packed CuAlO2 particles, with a thickness of ~ 15 μm

     

     

    Fig. S2. XRD patterns of pristine and Ar&H2 plasma treated CuAlO2 sensors. Ar&H2 plasma treatment didn’t

    cause any detectable impurity phase. All the samples show a 3R (dominent) and 2H mixed CuAlO2 phase.

     

    Fig. S3. SEM images of pristine (a) and Ar&H2 plasma treated PT-30 (b), PT-60 (c) and PT-90 (d) CuAlO2

    sensors. Except for 90 minitues treated sample (PT-90) with appearance of small nanodots, no obrvious change

    of surface morphology was obervered via Ar&H2 plasma treatment.

     中國(guó)科學(xué)技術(shù)大學(xué)   申請(qǐng)論文提名獎(jiǎng)CC - 2019 - SI - Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment

    感謝中科大的論文    沒(méi)有發(fā)完  之后我在慢慢更新吧

    主站蜘蛛池模板: 亚洲影视自拍揄拍愉拍| 国产大乳喷奶水在线看| 中文无码字幕中文有码字幕| 欧美日韩国产色综合一二三四| 国产一级毛片免| 自拍偷拍校园春色| 女人把私密部位张开让男人桶| 久久伊人成人网| 欧美国产精品久久| 免费一级毛片在线播放泰国| 蜜臀av性久久久久蜜臀aⅴ| 国产精品午夜爆乳美女视频| аⅴ中文在线天堂| 日产精品久久久久久久| 亚洲中文字幕伊人久久无码| 男女一边摸一边做爽视频| 国产三级精品三级男人的天堂| 两个人看www免费视频| 大陆老太交xxxxⅹhd| 中文字幕乱码人妻综合二区三区| 日韩精品无码人妻一区二区三区| 亚洲欧美日韩国产精品网| 精品久久久久久中文字幕一区 | 国产香蕉一区二区在线网站 | 国产成人免费网站| 99re在线视频播放| 小小的日本乱码在线观看免费 | 毛片基地免费观看| 公和我做好爽添厨房| 蜜桃视频在线观看免费网址入口| 国产日本在线视频| 4虎2022年最新| 夜先锋av资源网站| 一品道一本香蕉视频| 抱着cao才爽的视频| 久久婷婷人人澡人人喊人人爽 | 国产性夜夜夜春夜夜爽| 18禁黄污吃奶免费看网站| 在线视频日韩精品| 一区二区视频在线观看| 我的3个美艳馊子白莹小说|