亚洲精品无码不卡_狠狠躁狠狠躁东京热无码专区_午夜亚洲av日韩av无码大全_无码色偷偷亚洲国内自拍

技術(shù)文章

Technical articles

當(dāng)前位置:首頁(yè)技術(shù)文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

更新時(shí)間:2021-06-01點(diǎn)擊次數(shù):3038

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

        Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

1. Introduction

       Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

 2. Results and Discussion

        Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

 

 

 

 

 

 

 

 

以上論文信息不完整    感謝中科大的孟老師對(duì)微型探針臺(tái)的反饋!需要詳細(xì)的文獻(xiàn),請(qǐng)到中科院一區(qū)  影響因子12    感謝所有的科研奉獻(xiàn)者辛勞的付出。

亚洲精品无码不卡_狠狠躁狠狠躁东京热无码专区_午夜亚洲av日韩av无码大全_无码色偷偷亚洲国内自拍

    国产精品亚洲一区| 欧美在线视频一区二区三区| 99精品视频免费观看视频| 欧美日韩三级| 欧美日韩天天操| 欧美黄色免费| 欧美日韩在线大尺度| 国产一区视频在线观看免费| 亚洲麻豆一区| 国产日韩亚洲| 久久精品国产综合精品| 老司机精品视频网站| 欧美另类综合| 亚洲高清在线| 亚洲欧美日韩一区在线观看| 国产精品99一区二区| 亚洲福利电影| 国产伦精品一区二区三区四区免费| 久久久99国产精品免费| 国内精品久久久久久久97牛牛 | 久久精品一本| 欧美freesex交免费视频| 欧美日韩国产亚洲一区| 在线观看成人av电影| 亚洲一区二区三区高清不卡| 激情欧美日韩一区| 亚洲免费大片| 欧美女激情福利| 国产日本精品| 欧美久久成人| 一区二区三区偷拍| 久久av一区二区| 激情久久五月| 小嫩嫩精品导航| 在线成人www免费观看视频| 亚洲一区免费看| 亚洲国产第一| 久久婷婷麻豆| 亚洲欧美精品| 亚洲最新在线| 国内精品**久久毛片app| 国产区日韩欧美| 国模大胆一区二区三区| 久久国产精品亚洲77777| 亚洲午夜精品久久久久久app| 久久人人97超碰国产公开结果| 国产欧美日韩一级| 欧美区国产区| 美女日韩在线中文字幕| 亚洲国产婷婷| 欧美日韩成人| 欧美久久久久久| 久久久久久久久久久久久久一区| 亚洲免费在线| 国产一区二区高清视频| 亚洲经典三级| 最新亚洲激情| 亚洲黄色大片| 亚洲激精日韩激精欧美精品| 亚洲最黄网站| 亚洲中字黄色| 免费看的黄色欧美网站| 免费看亚洲片| 久久亚洲免费| 欧美日韩一区二区三区在线观看免| 欧美另类综合| 国产精品啊啊啊| 国产精品av一区二区| 欧美日韩岛国| 海角社区69精品视频| 国产自产在线视频一区| 国产精品s色| 国产精品videosex极品| 亚洲午夜精品一区二区| 136国产福利精品导航网址| 在线欧美福利| 国产精品一区二区在线观看 | 国产欧美一区二区三区另类精品 | 亚洲一区欧美二区| 91久久黄色| 国产视频不卡| 美女精品网站| 欧美亚韩一区| 亚洲久色影视| 亚洲欧美电影在线观看| 久久免费一区| 欧美天天在线| 日韩视频精品| 久久av一区| 欧美日韩国产在线一区| 在线国产欧美| 午夜一区在线| 狠狠综合久久av一区二区老牛| 一区二区三区|亚洲午夜| 鲁鲁狠狠狠7777一区二区| 亚洲欧美影院| 亚洲精品三级| 久久综合久久久| 国产精品大片| 亚洲一区欧美二区| 久久综合一区| 一本久久综合| 欧美日韩国产不卡在线看| 亚洲精品欧美精品| 欧美亚洲自偷自偷| 午夜日韩福利| 性刺激综合网| 国产一区二区三区四区hd| 一区二区高清| 激情综合视频| 久久免费99精品久久久久久| 国产精品制服诱惑| 欧美成人亚洲| 亚洲综合视频一区| 国产精品国产三级国产专区53| 久色成人在线| 先锋影音久久| 国产一区二区三区久久| 亚洲一级一区| 午夜欧美精品| 久久综合久久综合这里只有精品| 国产一区二区三区奇米久涩| 国产精品久久国产愉拍| 在线播放一区| 欧美三级小说| 狂野欧美性猛交xxxx巴西| 中文日韩在线| 亚洲国产mv| 国模 一区 二区 三区| 久久精品国产清高在天天线 | 伊人影院久久| 欧美午夜精品久久久久免费视| 午夜精品免费| 欧美激情第六页| 老司机精品久久| 久久亚洲一区| 欧美一区二区三区在线免费观看| 久久国产一区| 午夜精品美女久久久久av福利| 欧美精品偷拍| 亚洲无吗在线| 在线免费观看欧美| 国内精品久久久久国产盗摄免费观看完整版| 欧美日韩一区在线视频| 欧美日韩亚洲一区在线观看| 亚洲福利专区| 亚洲视频导航| 亚洲一区二区三区免费在线观看 | 亚洲国产成人不卡| 欧美日韩精品不卡| 久久九九国产| 欧美精品一区在线发布| 激情久久一区| 在线视频欧美一区| 亚洲精品人人| 亚洲永久字幕| 欧美一区免费视频| 欧美在线91| 亚洲午夜精品久久久久久app| 99精品热6080yy久久| 国产乱码精品一区二区三区不卡| 欧美一区二区三区另类| 国产精品二区二区三区| 99精品免费| 免费看的黄色欧美网站| 欧美日韩福利| 亚洲精品九九| 老司机免费视频久久| 在线不卡欧美| 久久动漫亚洲| 91久久在线| 女人天堂亚洲aⅴ在线观看| 伊人蜜桃色噜噜激情综合| 国产精品免费在线| 久久狠狠婷婷| 一道本一区二区| 欧美精品亚洲精品| 黄色亚洲大片免费在线观看| 久久久福利视频| 最新日韩欧美| 欧美三级免费| 久久五月天婷婷| 日韩视频在线观看国产| 午夜日韩av| 国产精品美女黄网| 女同一区二区| 蜜桃av久久久亚洲精品| 亚洲免费播放| 国内精品99| 欧美国产三区| 久久国产一区| 亚洲一区免费| 国产私拍一区| 亚洲精品在线视频观看| 午夜亚洲福利| 亚洲男人影院| 亚洲永久网站| 国产精品久久久一区二区三区| 999在线观看精品免费不卡网站| 在线精品观看| 精品1区2区| 亚洲午夜精品国产| 老司机午夜精品视频| 美女精品在线| 久久久久网站| 美女久久一区| 久久人人超碰| 久久国产精品一区二区三区| 久久久精品五月天| 国产精品女主播一区二区三区| 国产一区二区久久久| 99精品国产高清一区二区| 亚洲国产免费看| 99精品免费| 亚洲一区二三| 久久久久久九九九九| 欧美亚洲三级| 欧美黄色精品| 亚洲午夜在线| 一本色道精品久久一区二区三区 | 国产精品入口66mio| 亚洲看片一区| 国产精品色网| 欧美一区综合| 亚洲手机视频| 国产欧美精品久久| 一本久道综合久久精品| 亚洲一区二区三区欧美| 噜噜噜噜噜久久久久久91| 香蕉久久久久久久av网站| 美女精品在线观看| 久久久久网址| 亚洲一级黄色| 亚洲欧美日韩精品在线| 欧美尤物一区| 亚洲国产日韩在线| 一区二区免费在线视频| 久久精品91| 激情自拍一区| 国产日韩一区欧美| 亚洲一区高清| 国内精品国语自产拍在线观看| 亚洲一区二区三区四区中文| 在线看无码的免费网站| 免费一级欧美片在线播放| 欧美一区91| 日韩一级不卡| 欧美三区视频| 模特精品在线| 亚洲精品黄色| 欧美日韩免费观看一区| 国产亚洲二区| 国产精品成人一区二区网站软件 | 国产日韩一区二区三区在线播放| 欧美日韩精品免费观看| 国产偷久久久精品专区| 欧美在线日韩精品| 在线成人欧美| 玖玖视频精品| 国产美女一区| 亚洲午夜激情| 欧美福利视频| 亚洲免费一区二区| 欧美视频导航| 久久经典综合| 在线亚洲观看| 一区二区三区我不卡| 欧美一区91| 国产伦精品一区二区三区视频孕妇| 亚洲三级毛片| 在线观看福利一区| 久久精品日产第一区二区| 在线亚洲免费| 亚洲区国产区| 狠狠噜噜久久| 欧美日韩一区二区三区在线视频| 欧美精品入口| 欧美国产综合| 午夜久久久久| 欧美在线亚洲| 久久综合九色综合欧美狠狠| 牛夜精品久久久久久久99黑人| 欧美 亚欧 日韩视频在线| 母乳一区在线观看| 野花国产精品入口| 欧美先锋影音| 激情视频一区| 在线精品亚洲| 亚洲精品九九| 在线天堂一区av电影| 一本久道久久综合狠狠爱| 一本色道久久综合| 国产在线一区二区三区四区| 亚洲视频碰碰| 一区在线视频观看| 欧美日本亚洲| 精品二区久久| 99精品福利视频| 国产一级一区二区| 夜夜爽99久久国产综合精品女不卡| 亚洲永久在线| 欧美精品福利| 一区在线视频观看| 亚洲黄色大片| 亚洲欧美日韩另类精品一区二区三区| 欧美成人综合| 亚洲激情婷婷| 久久动漫亚洲| 国产综合自拍| 亚洲精品偷拍| 免费亚洲网站| 狠狠色狠狠色综合人人| 亚洲少妇自拍| 欧美日韩免费观看一区| 亚洲高清视频在线观看| 国产精品一卡| 欧美网站在线| 国产精品亚洲综合| 久久亚洲欧洲| 亚洲精选久久| 欧美激情视频一区二区三区免费| 国产日韩欧美一区二区| 女人香蕉久久**毛片精品| 伊人久久大香线蕉综合热线| 久久久久久精| 99在线热播精品免费99热| 欧美在线播放一区| 欧美天天视频| 免费在线国产精品| 欧美精品福利| 午夜一级在线看亚洲| 亚洲大胆在线| 欧美日韩另类丝袜其他| 亚洲尤物精选| av不卡免费看| 一区在线视频| 欧美福利专区| 噜噜爱69成人精品| 黄色综合网站| 欧美激情第六页| 国产精品久久久久久模特| 欧美日韩亚洲一区三区| 久久国产精品久久精品国产| 国产精品嫩草99av在线| 亚洲电影成人| 欧美三日本三级少妇三99| 久久精品卡一| 国产精品亚洲一区| 黄色成人在线网站| 国产精品视频| 日韩午夜免费| 在线精品亚洲一区二区| 欧美阿v一级看视频| 欧美亚洲一区二区三区| 日韩视频一区| 在线观看亚洲| 亚洲福利久久| 影音先锋亚洲精品| 欧美日产一区二区三区在线观看| 欧美国产综合视频| 亚洲专区在线| 在线一区日本视频| 激情久久久久久| 亚洲福利电影| 亚洲黄色一区| 一区二区高清视频| 亚洲一二区在线| 狠狠色噜噜狠狠色综合久| 国产字幕视频一区二区| 欧美日韩国产探花| 老牛嫩草一区二区三区日本| 欧美大香线蕉线伊人久久国产精品| 国产精品激情| 亚洲福利专区| 国产亚洲二区| 久久精品中文| 欧美精品网站| 好吊视频一区二区三区四区| 在线亚洲美日韩| 先锋影音久久| 午夜视频一区| 亚洲国产欧美不卡在线观看| 国产精品乱子乱xxxx| 久久国产精品亚洲va麻豆| 狂野欧美性猛交xxxx巴西| 欧美日韩精品综合| 午夜国产欧美理论在线播放 | 国产一区视频在线观看免费| 亚洲理伦在线| 免费在线亚洲欧美| 国产精品视频| 欧美日韩成人| 一区二区三区三区在线| 久久中文在线| 影音先锋亚洲一区| 91久久国产自产拍夜夜嗨| 国产深夜精品| 欧美精品色网| 一区二区毛片| 欧美1区2区视频|