亚洲精品无码不卡_狠狠躁狠狠躁东京热无码专区_午夜亚洲av日韩av无码大全_无码色偷偷亚洲国内自拍

技術(shù)文章

Technical articles

當(dāng)前位置:首頁(yè)技術(shù)文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

更新時(shí)間:2021-06-01點(diǎn)擊次數(shù):3038

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

        Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

1. Introduction

       Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

 2. Results and Discussion

        Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

 

 

 

 

 

 

 

 

以上論文信息不完整    感謝中科大的孟老師對(duì)微型探針臺(tái)的反饋!需要詳細(xì)的文獻(xiàn),請(qǐng)到中科院一區(qū)  影響因子12    感謝所有的科研奉獻(xiàn)者辛勞的付出。

亚洲精品无码不卡_狠狠躁狠狠躁东京热无码专区_午夜亚洲av日韩av无码大全_无码色偷偷亚洲国内自拍

    久久久精品动漫| 先锋影音一区二区三区| 国产精品一区亚洲| 亚洲一区一卡| 午夜精品亚洲| 亚洲人成免费| 欧美一区亚洲| 亚洲视频成人| 狠狠88综合久久久久综合网| 亚洲综合首页| 亚洲黄色一区| 欧美日韩一区二区三区四区在线观看 | 久久精品一二三区| 激情久久久久| 久久精品欧美| 国产欧美亚洲一区| 欧美婷婷久久| 久久综合一区| 香蕉久久夜色精品国产| 亚洲精品影院| 欧美日韩在线高清| 久久国产精品久久精品国产| 一本色道久久精品| 日韩午夜av在线| 亚洲高清资源| 亚洲东热激情| 激情视频一区二区三区| 欧美大片专区| 欧美日韩成人| 欧美久久综合| 亚洲网站啪啪| 国产精品多人| 18成人免费观看视频| 国产一区免费视频| 欧美日韩在线一二三| 久久永久免费| 欧美在线黄色| 欧美高清一区| 国产在线欧美日韩| 亚洲午夜精品久久久久久浪潮| 欧美精品首页| 精品成人一区| 日韩午夜视频在线观看| 中文亚洲字幕| 欧美亚洲专区| 欧美不卡三区| 亚洲福利av| 国产亚洲激情| 老司机一区二区三区| 久久高清国产| 午夜精品亚洲| 亚洲青涩在线| 免费日韩视频| 欧美精品色网| 亚洲国产日韩在线| 一本色道久久| 久久aⅴ国产紧身牛仔裤| 久久精品一区二区国产| 欧美精品尤物在线| 亚洲国产日韩美| 国产伦精品一区二区| 欧美~级网站不卡| 激情久久一区| 亚洲中字在线| 国产精品xvideos88| 亚洲人成毛片在线播放女女| 午夜亚洲性色视频| 狠狠久久综合婷婷不卡| 国产欧美69| 国产精品videosex极品| 国产欧美一级| 国产综合亚洲精品一区二| 国产日韩精品久久| 欧美精选一区| 欧美专区在线| 一级成人国产| 狠狠色综合网站久久久久久久| 国产精品久久国产愉拍| 黄色成人精品网站| 欧美综合二区| 亚洲作爱视频| 亚洲国产二区| 欧美高清一区| 久久婷婷丁香| 国产精品区一区| 亚洲狠狠婷婷| 国内精品久久国产| 欧美国内亚洲| 亚洲一区自拍| 国产欧美一级| 99热精品在线| 亚洲人成免费| 亚洲国产精品久久久久久女王 | 欧美精品免费观看二区| 中文精品一区二区三区| 国产在线精品二区| 欧美91大片| 麻豆精品视频| 国产精品区一区| aa亚洲婷婷| av不卡免费看| 国产视频不卡| 伊人狠狠色j香婷婷综合| 亚洲私拍自拍| 亚洲国产综合在线看不卡| 国产一区二区三区自拍| 欧美午夜不卡| 欧美视频日韩| 国自产拍偷拍福利精品免费一| 欧美日一区二区在线观看 | 亚洲一区二区三区欧美 | 国产专区一区| 一区国产精品| 亚洲高清av| 一区二区三区av| 国产欧美一区二区三区另类精品| 在线一区亚洲| 亚洲综合精品| 午夜欧美精品| 亚洲小说欧美另类社区| 一区免费视频| 国产精品乱码| 欧美一区综合| 亚洲激情一区二区三区| 国产欧美成人| 久久天堂成人| 国产综合久久| 正在播放亚洲| 欧美成人有码| 日韩一级不卡| 久久综合九色99| 亚洲午夜精品久久久久久浪潮| 99精品免费| 久久久青草婷婷精品综合日韩| 午夜欧美精品久久久久久久| 亚洲伦伦在线| 欧美成人久久| 国产日韩欧美三级| 欧美激情视频一区二区三区免费| 亚洲激情自拍| 欧美成人日本| 一本久道久久综合狠狠爱| 欧美一区91| 亚洲欧洲日本国产| 欧美一区二区三区在线免费观看 | 99精品国产一区二区青青牛奶| 亚洲欧美日韩国产综合精品二区| 欧美日韩一视频区二区| 一区二区三区成人精品| 免费亚洲一区二区| 国模精品一区二区三区| 国产日韩高清一区二区三区在线| 欧美一区亚洲二区| 国产精品久久777777毛茸茸 | 老司机午夜免费精品视频 | 亚洲黄页一区| 午夜欧美理论片| 久久成人国产| 国产欧美日韩一区二区三区在线| 国产精品porn| 欧美1区2区| 久久精品电影| 国产精品一区二区三区观看| 亚洲午夜电影| 欧美婷婷在线| 欧美黄污视频| 欧美凹凸一区二区三区视频| 亚洲欧美久久久| 在线一区亚洲| 99在线精品免费视频九九视| 亚洲激情亚洲| 亚洲国产一区二区三区在线播| 欧美人成在线| 欧美国产综合视频| 欧美黄色aaaa| 午夜精品电影| 国产精品地址| 国内一区二区三区| 黄色日韩在线| 在线不卡欧美| 在线观看视频免费一区二区三区| 欧美日本韩国在线| 欧美特黄a级高清免费大片a级| 久久一区二区三区av| 蜜桃av综合| 久久久久se| 欧美阿v一级看视频| 欧美黄色精品| 黑人巨大精品欧美一区二区小视频| 国产精品国产三级欧美二区| 激情五月***国产精品| 91久久精品一区二区别| 国产私拍一区| 久久人人97超碰人人澡爱香蕉| 久久午夜精品| 欧美日韩国产综合视频在线| 国产综合激情| 一区二区日韩免费看| 国产精品日韩高清| 久久婷婷久久| 亚洲性视频h| aⅴ色国产欧美| 久久国产精品高清| 欧美体内she精视频在线观看| 国语自产精品视频在线看8查询8| 雨宫琴音一区二区在线| 国产精品夜夜夜| 午夜久久资源| 一区二区三区四区五区精品视频| 美女精品一区| 91久久国产自产拍夜夜嗨| 亚洲一区二区三区精品视频| 午夜久久影院| 一本色道久久综合一区| 久久亚洲欧美| av成人免费观看| 欧美黄色一区| 国产精品免费区二区三区观看| 欧美在线亚洲综合一区| 99国内精品| 欧美日韩高清免费| 9国产精品视频| 欧美.日韩.国产.一区.二区| 亚洲人成人一区二区三区| 亚洲欧美日韩视频二区 | 99精品欧美| 欧美jizzhd精品欧美巨大免费| 亚洲国产二区| 欧美激情第六页| 国产精品乱码一区二区三区| 欧美视频导航| 鲁大师成人一区二区三区| 在线观看视频日韩| 午夜精品剧场| 久久精品国语| 一区二区激情| 亚洲日本久久| 亚洲图片在线观看| 你懂的一区二区| 国产毛片久久| 9国产精品视频| 亚洲无线一线二线三线区别av| 久久精品午夜| 亚洲欧美春色| 国产精品免费在线| 日韩一级在线| 亚洲精品1234| 亚洲理论在线| 99视频精品免费观看| 影音先锋一区| 精品成人国产| 亚洲调教视频在线观看| 国产精品高清一区二区三区| 欧美久久综合| 欧美日韩国产不卡在线看| 欧美91福利在线观看| 久久一区二区三区四区五区| 久久青草久久| 欧美国产精品| 欧美日韩久久| 亚洲欧美综合| 欧美日韩一区在线观看视频| 国产精品国产三级欧美二区| 国产精品a久久久久| 欧美视频导航| 狠久久av成人天堂| 在线观看成人一级片| 影音先锋中文字幕一区| 亚洲精品日韩精品| 国产亚洲毛片| 久久大香伊蕉在人线观看热2| 麻豆成人在线| 欧美日韩成人| 亚洲欧洲日本mm| 国产精品永久入口久久久| 国产伦精品一区二区| 久久国产精品一区二区三区四区| 久热国产精品| 伊人狠狠色j香婷婷综合| 在线一区欧美| 久久久久久色| 国模精品一区二区三区| 亚洲激情成人| 男人的天堂成人在线| 欧美日韩喷水| 国产日韩精品视频一区二区三区| 欧美一级播放| 亚洲图片在线观看| 国产精品嫩草99av在线| 欧美jjzz| 亚洲精品在线二区| 亚洲综合99| 国产精品对白刺激久久久| 国产亚洲欧美另类一区二区三区| 久久精品人人| 99国内精品| 欧美日韩一区二| 日韩午夜在线电影| 欧美永久精品| 国产九区一区在线| 在线成人欧美| 午夜天堂精品久久久久| 99热精品在线| 国产综合18久久久久久| 欧美一级一区| 国产欧美在线| 激情视频一区| 久久综合激情| 午夜在线播放视频欧美| 在线观看成人一级片| 欧美一区二区三区久久精品茉莉花 | 亚洲久久在线| 欧美三级小说| 欧美一区免费视频| 模特精品在线| 99re热精品| 亚洲国产精品久久久久久女王| 久久一区中文字幕| 亚洲一区成人| 亚洲免费观看| 亚洲国产成人不卡| 黄色成人精品网站| 欧美日韩国产不卡在线看| 久久精品人人| 美女精品在线| 亚洲综合欧美| 国产精品综合| 香蕉国产精品偷在线观看不卡| 国产亚洲精品v| 国产精品入口66mio| 国产日韩欧美三区| 中文欧美日韩| 亚洲专区在线| 久久精品成人一区二区三区蜜臀| 国产伦精品一区二区| 亚洲欧美大片| 久久在线精品| 欧美私人啪啪vps| 伊人成人在线视频| 99re国产精品| 香蕉久久夜色| 欧美在线国产| 国内精品久久久久久久影视麻豆| 国产精品扒开腿做爽爽爽软件| 韩国一区二区三区在线观看| 亚洲香蕉网站| 一本色道久久综合亚洲精品不| 国产日韩1区| 久久大逼视频| 国产精品九九| 亚洲精品在线免费| 国产精品综合色区在线观看| 久久国产一二区| 国产综合精品一区| 一本色道久久综合| 久久精品女人| 狠狠色狠狠色综合人人| 99热在线精品观看| 久久久亚洲人| 黄色在线一区| 国产精品久久国产三级国电话系列| 亚洲欧美日本国产专区一区| 久久只有精品| 亚洲国产mv| 免费在线国产精品| 国产主播一区| 国产欧美日韩综合一区在线播放| 蜜桃视频一区| 亚洲国产精品第一区二区| 亚洲一区国产| 国一区二区在线观看| 亚洲综合不卡| 亚洲高清毛片| 欧美在线3区| 国产精品美女诱惑| 激情亚洲成人| 美女精品在线| av成人国产| 国产主播精品| 久久久久久久久久久一区| 亚洲日本视频| 国产精品国产精品| 久久国产欧美| 国产精品久久久对白| 激情欧美日韩| 久久一日本道色综合久久| av不卡免费看| 激情综合网址| 国产一区二区三区四区老人| 久久久av水蜜桃| 国产精品试看| 一二三区精品| 一区二区自拍| 国产精品国产一区二区| 久久综合狠狠综合久久综青草| 亚洲欧美网站| 亚洲一区二区伦理| 国产情侣久久| 国产亚洲一区二区三区在线播放| 亚洲欧洲综合|